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The Bootstrap: A Simple Approach to Estimating Standard Errors and Confidence
Intervals when Theory Fails

Standard errors and confidence intervals for a simple statistic
like the mean can be calculated by the use of an algebraic
formula derived from familiar assumptions about the data,
such as the normal distribution. For a more complex type of
statistic (like the familiar relative standard deviation), or where
the standard assumptions do not apply, we often find that an
algebraic formula cannot be derived.  In such instances, a
simple alternative method based on re-sampling the data is
becoming increasingly popular. This computer-intensive
method, known as the bootstrap1, is widely applicable and is
introduced here by two straightforward examples.

Basics
The bootstrap can be used to estimate the standard error of the
estimate of a parameter θ  calculated from a dataset x consisting of
n individual values, i.e., x = (x1, x2,...,xn). θ  could be, for example,
a simple mean or a more complex entity calculated from the data.
We generate a large number B of new data sets, each of the same
size as the original, by sampling x at random with replacement.
Each resampled data set x* is known as a bootstrap sample.

Sampling with replacement means that, if any member xi of the
original set is chosen as the first value of the bootstrap sample, it
could also be chosen as any of the successive values. In principle,
therefore, a bootstrap sample could consist of the same value
repeated n times. In practice, however, such an occurrence would
be unlikely, because the number of different bootstrap samples
available would be nn. Even  for a dataset of size n = 5 there would
be 3125 distinct possible bootstrap samples.

For each of these bootstrap samples ( )xb b B∗ = 1, ,K  we calculate

$θb
∗  (a bootstrap replication), which is the estimate of the parameter

θ  obtained from the b-th bootstrap sample. We obtain the bootstrap
estimate of the standard error of θ  simply by calculating the

standard deviation of the $θb
∗ values. The confidence intervals could

be estimated from the usual formula $ $θ ± zsb  
where  $θ  is the

ordinary mean, $sb is standard deviation of the $θb
∗ values and z

represents the critical value on the N(0,1) distribution, and takes
the value of 1.96 for the 95% confidence level. This latter operation

depends on the assumption that $θb
∗ is normally distributed. We

could inspect a histogram of $θb
∗ to see whether that assumption was

plausible.

Where $θb
∗  seems to differ from the normal, confidence intervals

can be estimated by sorting the values of $θb
∗ into ascending order. If

we wanted (say) a 95% confidence interval and we had B = 1000
bootstrap samples, the empirical lower and upper limits would be
the 25th (0.025B) and 975th (0.975B) values in the sorted data.  In

practice the distribution of $θb
∗ is often found to be skewed (because

we are usually dealing with a complex type of statistic), so these
empirical confidence intervals are probably safer.

A Simple Example
For demonstration purposes, we use the bootstrap method here to
calculate a standard error (SEM) and 95% confidence interval for a
ordinary mean. In this instance, of course, the two results can be
obtained by statistical theory under the normal assumption, so we
can compare the bootstrap result with a classical t-interval. The
data used are shown below.

0.003  0.070  0.164  0.195  0.441  0.566  0.742  1.136  1.160
1.312  1.623  1.684 1.750  1.803  2.180

Examination of a dotplot of the data shows no obviously suspect
data, although we might reasonably entertain doubts that the parent
distribution was normal. (There is, in fact, a significant deviation
from normality.)
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A More Complex Example
The real benefit of the bootstrap is that it can be used on very
complex statistics where statistical theory does not provide an
answer. Here we use the bootstrap to look at a moderately complex
example, the results of a collaborative trial. In this trial,  twelve
laboratories have independently analysed portions of a
homogeneous test material, in duplicate, by a specified method. The
results (in ppm) are as follows.

Lab. No. 1st result 2nd result

1 63 61

2 64 62

3 70 68

4 64 60

5 76 75

6 71 71

7 64 65

8 61 64

9 50 53

10 65 70

11 73 74

12 76 72

The most important statistic derived from a collaborative trial is
that describing the reproducibility (between-laboratory) precision,
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