Uncertainty from Sampling -*Evaluation and use in Validation*

Prof Michael H Ramsey Centre for Environmental Research, School of Life Sciences, University of Sussex, Brighton, UK

Overview

• Objectives

+ Role of new Eurachem/Eurolab/Citac/Nordtest Guide

US university of Susses

Traditional Approach to Sampling Quality

- Sampling traditionally considered separately from measurement.
- Design 'correct' sampling protocol to give a representative sample
- Train sampler to apply the protocol,
- Assume that is applied 'correctly' - no quality control of sampling
- Assume that uncertainty of measurement arises only in the lab analysis

US University of Sussex CER

Sampling as part of the measurement process Sampling really the first step in the measurement process In situ measurement techniques reveal this Place the sensor→ make measurement = taking a sample Uncertainty in sampling produces U in measurement Physical sample preparation (in field or lab) e.g. filter, acidify, dry, store, sieve, grind, split is also part of the measurement process and potentially important source of U include in the validation process

Sampling as part of the measurement process

Sampling as part of the measurement process

- If the objective is to measure the true value
 - of the analyte concentration (or measurand)
 - in the sampling target (e.g. batch of food)
- · Sampling is included in measurement process
- U from sampling part of measurement uncertainty*
 method validation needs to include sampling
- If true value (or measurand) defined solely in terms of laboratory sample
 - sampling is not included
- Most user of analytical measurements assume $x\pm U$ apply to target, not just to lab sample

- * Ramsey MH (2004) Accred Qual Assur., 9, 11-12, 727 - 728
 US of suse

CER

CER

Methods for estimating uncertainty of measurement (including sampling)

• What are the options?

- Empirical methods 'Top down' approach
 based on replicate measurements (within or between organisations)
 applicable to any system
- Modelling methods 'Bottom up' approach
 - based on identifying, estimating and summing all of the components = 'Budget Approach'
 - (Kurfurst *et al.*, 2004, Accred Qual Assur., 9, 64-75)
 sometimes uses Sampling Theory (e.g. Gy's) to estimate components
 - (Minkkinen 2004, Chemometrics and Intelligent Lab. Systems, 74, 85-94)
 applicable to some particulate systems

US University of Susses

Estimation of uncertainty – contributions in the empirical approach						
Process	Effect class					
	Random (precision)	Systematic (bias)				
Analysis	e.g. duplicate analyses	e.g. certified reference materials				
Sampling	duplicate samples	Reference Sampling Target, Inter-Organisational Sampling Trial				
US University of Susses		CER				

Statistical model

for empirical estimation of uncertainty

x = measured value of the analyte concentration in the sampling target

= *true* value of the analyte concentration in the sampling target

US University of Sussex

'W' Sampling Design for Lettuce

Nitrate conc. in Duplicate Samples

Most analytical duplicates

Validation of whole measurement procedure		
Initial validation		
-used when sampling is done as a one-off campaign		
-(spot sampling, e.g. contaminated site investigation)		
-use initial estimation of U		
-e.g. using duplicate method - requiring ≥32 measurements		
-One target/site validation may need repeating at intervals		
-i.e. repeated sampling, (e.g. time or flow- proportional sampling of waste wa	ter)	
Validation demonstrates what can be achieved and,		
-if that conforms to fitness-for-purpose requirement,		
-then procedures deemed suitable for routine use.		
US University CE	R	

Relationship between validation and quality contro				
of whole measurement procedure				
Quality control of sampling (and analysis) SAQC				
- to ensure that conditions prevailing at validation				
- and therefore the expected uncertainty attached to the results)				
- are still applicable every time those sampling/analytical procedures executed.				
- i.e. routine measurements are still fit-for-purpose				
Differences between sampling and analytical validation/QC				
- Some sampling targets (like analysis?) quite consistent between batches (e.g. water in butter)				
- Many targets are very variable between 'batches' (e.g. contaminated land - hetero)				
- Estimates of U, and FFP criteria (if site specific), may have varied since time of validation				
- May need more elaborate SAQC – or repeated validation, at each target/batch/site				

US University of Sussex

Judging fitness-for-purpose in validation

- How can you judge if you have too much uncertainty?
- One option -use the optimised uncertainty (OU) method*
- Balance the cost of measurement - against the cost of making incorrect decisions
- Knowing sampling and analytical components
- judge whether either is not FFP
 therefore where improvements/ increased expenditure required

Acceptable level of Uncertainty?

Effect	Relative Standard Uncertainty(%)	
	Cd	Р
Variation "between locations"	5.4	2.9
Sampling strategy	1.0	0.5
Depth	3.5	3.7
Splitting	3.7	3.3
Drying	0.6	0.6
Analysis	5.2	9.7
Combined Uncertainty	9.1	11.3

Modelling using Sampling Theory

$$\sigma_r^2 = Cd^3(\frac{1}{M_s} - \frac{1}{M_L})$$

US of Susses

Sampling Theory of Gy

US University of Sussex

U estimates from Sampling Theory

$S_{r1} = 0.033 = 3.3$ %	Primary sample
<i>s</i> _{<i>r</i>2} = 0.13 = 13 %	Secondary sample
S _{r3}	

US University of Sussex