Date: Thursday 18th January, 2024
Time: 2pm GMT / 3pm CET / 9am EST / 6:30pm IST
Duration: 45 minutes
Format: Webinar
Abstract
G protein-coupled receptors (GPCRs) are a very large and important class of drug targets. They are also a very difficult class in terms of modeling with adequate accuracy the necessarily many atoms that constitute the protein, ligands, membrane lipids and solvent. Faster and more accurate computational solutions are required for these challenging systems. In this session we discuss a workflow using computational chemistry methods that are available within Cresset’s CADD software platform, Flare™ to arrive at accurate binding free energies for a set of P2Y1 ligands bound to a lipid-exposed binding site.
The methods are:
Time: 2pm GMT / 3pm CET / 9am EST / 6:30pm IST
Duration: 45 minutes
Format: Webinar
Abstract
G protein-coupled receptors (GPCRs) are a very large and important class of drug targets. They are also a very difficult class in terms of modeling with adequate accuracy the necessarily many atoms that constitute the protein, ligands, membrane lipids and solvent. Faster and more accurate computational solutions are required for these challenging systems. In this session we discuss a workflow using computational chemistry methods that are available within Cresset’s CADD software platform, Flare™ to arrive at accurate binding free energies for a set of P2Y1 ligands bound to a lipid-exposed binding site.
The methods are:
- Molecular Dynamics (MD)
- Water analysis solving the Ornstein-Zernike equation (3D-RISM)
- Alignment of ligands for FEP (Conf Hunt & Align)
- Relative binding free-energy (RBFE) perturbation theory (Flare FEP).